Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Vaccines (Basel) ; 10(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2163722

RESUMEN

Several SARS-CoV-2 variants of concern (VOC) and interest (VOI) co-circulate in Colombia, and determining the neutralizing antibody (nAb) responses is useful to improve the efficacy of COVID-19 vaccination programs. Thus, nAb responses against SARS-CoV-2 isolates from the lineages B.1.111, P.1 (Gamma), B.1.621 (Mu), AY.25.1 (Delta), and BA.1 (Omicron), were evaluated in serum samples from immunologically naïve individuals between 9 and 13 weeks after receiving complete regimens of CoronaVac, BNT162b2, ChAdOx1, or Ad26.COV2.S, using microneutralization assays. An overall reduction of the nAb responses against Mu, Delta, and Omicron, relative to B.1.111 and Gamma was observed in sera from vaccinated individuals with BNT162b2, ChAdOx1, and Ad26.COV2.S. The seropositivity rate elicited by all the vaccines against B.1.111 and Gamma was 100%, while for Mu, Delta, and Omicron ranged between 32 to 87%, 65 to 96%, and 41 to 96%, respectively, depending on the vaccine tested. The significant reductions in the nAb responses against the last three dominant SARS-CoV-2 lineages in Colombia indicate that booster doses should be administered following complete vaccination schemes to increase the nAb titers against emerging SARS-CoV-2 lineages.

2.
Vaccines (Basel) ; 10(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1649817

RESUMEN

Global surveillance programs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are showing the emergence of variants with mutations in the spike protein. Genomic and laboratory surveillance are important to determine if these variants may be more infectious or less susceptible to antiviral treatments and vaccine-induced antibodies. Three of the most predominant SARS-CoV-2 variants in Colombia during the epidemiological peaks of 2021 were isolated: Mu, a variant of interest; Gamma, a variant of concern; B.1.111, which lacks genetic markers associated with greater virulence. Microneutralization assays were performed by incubating 120 mean tissue culture infectious doses (TCID50) of each SARS-CoV-2 isolate with five two-fold serial dilutions of sera from 31 BNT162b2-vaccinated volunteers. The mean neutralization titer (MN50) was calculated by the Reed-Muench method. At the end of August, Mu represented 49% of coronavirus disease 2019 (COVID-19) cases in Colombia, followed by 25% of Gamma. In contrast, B.1.111 became almost undetectable. The evaluation of neutralizing antibodies suggests that patients vaccinated with BNT162b2 generate neutralizing antibody titers against the Mu variant at significantly lower concentrations relative to B.1.111 and Gamma. This study shows the importance of continuing surveillance programs of emerging variants, as well as the need to evaluate the neutralizing antibody response induced by other vaccines.

3.
Virus Res ; 308: 198629, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1573704

RESUMEN

The E484K mutation at the SARS-CoV-2 Spike protein emerged independently in different variants around the world and has been widely associated with immune escape from neutralizing antibodies generated during previous infection or vaccination. In this work, the B.1 + L249S+E484K lineage was isolated along with A.1, B.1.420, and B.1.111 SARS-CoV-2 lineages without the E484K mutation and the neutralizing titer of convalescent sera was compared using microneutralization assays. While no significant differences in the neutralizing antibody titers were found between A.1 and B.lineages without the E484K mutation, the neutralizing titers against B.1 + L249S+E484K were 1.5, 1.9, 2.1, and 1.3-fold lower than against A.1, B.1.420, B.1.111-I, and B.1.111-II, respectively. However, molecular epidemiological data indicate that there is no increase in the transmissibility rate associated with this new lineage. This study supports the capability of new variants with the E484K mutation to be resistant to neutralization by humoral immunity, and therefore the need to intensify surveillance programs to determine if these lineages represent a risk for public health.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Humanos , Inmunidad Humoral , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
4.
Infect Genet Evol ; 95: 105038, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1433673

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity has the potential to impact the virus transmissibility and the escape from natural infection- or vaccine-elicited neutralizing antibodies. Here, representative samples from circulating SARS-CoV-2 in Colombia between January and April 2021, were processed for genome sequencing and lineage determination following the nanopore amplicon ARTIC network protocol and PANGOLIN pipeline. This strategy allowed us to identify the emergence of the B.1.621 lineage, considered a variant of interest (VOI) with the accumulation of several substitutions affecting the Spike protein, including the amino acid changes I95I, Y144T, Y145S and the insertion 146 N in the N-terminal domain, R346K, E484K and N501Y in the Receptor binding Domain (RBD) and P681H in the S1/S2 cleavage site of the Spike protein. The rapid increase in frequency and fixation in a relatively short time in Magdalena, Atlantico, Bolivar, Bogotá D.C, and Santander that were near the theoretical herd immunity suggests an epidemiologic impact. Further studies will be required to assess the biological and epidemiologic roles of the substitution pattern found in the B.1.621 lineage.


Asunto(s)
Sustitución de Aminoácidos , COVID-19/epidemiología , Genoma Viral , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/transmisión , COVID-19/virología , Colombia/epidemiología , Monitoreo Epidemiológico , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , Filogeografía , Dominios Proteicos , SARS-CoV-2/clasificación , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad
5.
Front Med (Lausanne) ; 8: 697605, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1311379

RESUMEN

COVID-19 pandemics has led to genetic diversification of SARS-CoV-2 and the appearance of variants with potential impact in transmissibility and viral escape from acquired immunity. We report a new and highly divergent lineage containing 21 distinctive mutations (10 non-synonymous, eight synonymous, and three substitutions in non-coding regions). The amino acid changes L249S and E484K located at the CTD and RBD of the Spike protein could be of special interest due to their potential biological role in the virus-host relationship. Further studies are required for monitoring the epidemiologic impact of this new lineage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA